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Abstract

Neurotensin (NT) contributes to pathophysiology of neurodegenerative and 
psychiatric diseases, and the signal of NT and neurotensin receptor 1 (NTR1) is closely 
associated with cancer, inflammation and immunomodulatory disease. So far, drug 
targeting NTR1 has not reached any primary endpoint in clinical trial or approval, and 
the number of reported active compounds against NTR1 is too small to provide any 
novel scaffold in facilitating NTR1-based lead identification. Thus, the search for new 
inhibitors is of great interest to current drug discovery. This work explored the use of 
support vector machine (SVM) combined with putative non-inhibitor generation method 
as a virtual screening (VS) tool. SVM developed by NTR1 inhibitors published before 
2011 was verified by cross validation and by 20 independent test inhibitors published 
after 2011. By scanning large chemical libraries, low false-hit rates of 0.026% (3,452 
out of 13.56M PubChem chemicals) and 0.065% (109 out of 168K MDDR chemicals) 
were identified. A further investigation of 115 compounds identified by this work found 
17 novel scaffolds against NTR1, 29% of which have been reported to show CNS 
and cancer-related therapeutic effects. Therefore, SVM is effective in identifying novel 
NTR1 inhibitors, which can be a good starting point to facilitate CNS and anticancer 
drug discovery in the near future.

INTRODUCTION
Neurotensin (NT) is an endogenous tridecapeptide found 

in the central nervous system (CNS), which acts in brain as a 
primary neurotransmitter or neuromodulator[1]. Physiological 
functions of NT are predominantly mediated through its cognate 
high-affinity receptor, neurotensin receptor 1 (NTR1) [2]. In 
spite of extensive exploration on its physiologic roles in both the 
central nervous system and periphery [3-6], NTR1 was reported 
to show significant stimulatory activity in human neoplastic 
tissues [7] and closely associated with proliferation, apoptosis, 
invasion, and metastasis of multiple malignancies including 
prostate cancer [8], head and neck squamous cell carcinoma 
[9] and breast cancer [10]. This provides a great potential to 

exploit novel targeted therapeutics based on NTR1, which may 
contribute to the discovery of new CNS and anticancer drugs.

However, no drug targeting NTR1 was approved by FDA due 
to poor pharmacokinetic properties and/or side effects induced 
in human subjects. Only a few candidates were in clinical trial, 
but none of them met their therapeutic expectations so far. 
For example, SR-48692 (a nonpeptide antagonist that binds 
preferentially to NTR1) and CGX-1160 (a potent NTR1 activator) 
have completed Phase III trial for lung cancer [11] and Phase I 
trial for acute pain [12] respectively, but none of them shows any 
positive clinical trial results [13]. Currently, reported bioactive 
molecules against NTR1 are in small amount and sparsely 
distributed in the chemical space [14,15]. In particular, only 300 
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bioactive compounds were so far reported as NTR1 antagonists 
[14], and just 14 are described in the Therapeutic Target Database 
(TTD ) [16,17]. Therefore, there is a strong need for searching 
new NTR1 inhibitors to provide more candidates for developing 
CNS and anticancer drugs.

In order to find novel active compound, efforts have been 
directed at expanded search of larger chemical space [18,19]. 
As a rapid and effective strategy for lead identification, virtual 
screening (VS) has long been applied to predict lead from large 
chemical libraries [20]. As reported, the prediction performance 
of VS is often constrained by the small number of known active 
compounds sparsely distributed in the active regions of chemical 
space [21]. However, one of the tools, support vector machine 
(SVM), was reported to have substantial capability in identifying 
novel active compounds from sparse active data sets at low false-
hit rates [21]. So far, SVM has already been used to discover 
inhibitors of ERK [22], RAF [23], HIV-1 protease [24], ABL [19], 
mGluR1 [25], dopamine receptor [26] for treating infectious 
disease, nervous disorder and many cancers.

In this work, we used the most comprehensive set of NTR1 
inhibitors to develop a SVM model for discovering new lead 
scaffolds. First of all, inhibitors were divided into two groups by 
their publication date. Data published before 2011 were used 
to construct SVM model via 5-fold cross validation, while post-
2011 data were used as independent testing. The discovery 
performance of the constructed model was evaluated by 
independent test and a screening of large chemical libraries. 
Finally, scaffolds of new leads identified were further analyzed 
based on their reported therapeutic effects.

In the cross validation, inhibitors and non-inhibitors were 
randomly divided into 5 groups of approximately equal size with 4 
groups as training data and the remaining as testing. This process 
was conducted for all five possible training-testing compositions, 
and their average accuracy was calculated to determine the best 
parameters for constructing SVM model. By screening large 
chemical libraries (PubChem and MDDR), yield and false hit rate 
of the constructed model are further evaluated [27]. PubChem 
and MDDR contain high percentages of inactive compounds 
significantly different from the reported NTR1 inhibitors, which 
may artificially enhance the prediction enrichments. Therefore, 
a more strict test of the SVM model is applied by using a subset 
of true NTR1 non-inhibitors structurally similar to the known 
inhibitors, so that enrichment is not simply a separation of easily 
distinguishable features [28].

METHODS
Compound collection and construction of training 
and testing data sets

A total of 382 NTR1 inhibitors with structure information 
were collected from ChEMBL [14] and TTD [16]. In this work, 
119 inhibitors with IC50/Ki ≤ 10µM were considered as active, 
which includes 99 and 20 inhibitors published before and after 
2011. These known inhibitors cover a diverse set of compound 
scaffolds, which is very feasible for constructing SVM model. 
As illustrated in Figure 1, 12 scaffolds representing all 119 
structures are ranked in descending order according to the 
number of known active inhibitors within each scaffold. In Figure 
2, 12 examples out of 84 inhibitors within scaffold 1 together with 
their inhibitory activities (IC50 or Ki) against NTR1 are shown.

Sufficient negative data (non-inhibitors) are vital for reducing 
false-hits in constructing SVM model(29), but so far only a small 
amount of them were reported. Thus, putative non-inhibitors 
were generated by applying the same method as suggested by Liu 
et al [19] to represent the whole non-inhibitor chemical space. 
In this work, 67,054 putative non-inhibitors were generated 
by choosing representatives from families without active 
compounds, and virtual hit and false-hit rate in searching large 
chemical libraries were evaluated by using 13.56M PubChem and 
168K MDDR compounds together with 322 MDDR compounds 
structurally similar to the known NTR1 inhibitors. Molecular 
similarity matching together with visual inspection were used to 
distinguish whether compounds are similar or not [21].

Molecular descriptor
Molecular descriptors are quantitative representations of 

structural and physicochemical features of molecules, which have 
been extensively used in deriving quantitative structure activity 
relationships (QSAR) and VS tools [19,24-26,30,31]. A total of 98 
molecular descriptors listed in Supplementary Table 1 were used 
in this work, which include 18 descriptors in the class of simple 
molecular properties, 3 descriptors in the class of chemical 
properties, 35 descriptors in the class of molecular connectivity 
and shape, 42 descriptors in the class of electro-topological state.

SVM modeling and molecular similarity matching
SVM is a supervised learning and classification method used 

for distinguishing NTR1 inhibitors from non-inhibitors. Given a 
set of training data, SVM training algorithm constructs a model 
assigning new compound into the class of either inhibitors or 
non-inhibitors, which makes SVM a binary classifier [19].

Molecular similarity matching method used in this work is 
the Tanimoto similarity searching. Compounds similar to at least 
one known NTR1 inhibitor in the training set can be identified by 
calculating the Tanimoto similarity coefficient as list blow [32].
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Two compounds can be defined as similar to each other, 

when the similarity coefficient is larger than 0.9. More detail 
descriptions of the SVM modeling and similarity matching 
methods used in this work can be found in Supplementary 
Methods 1.

Measurement of VS performance in screening large 
libraries

VS performance in screening large chemical libraries is 
measured by several indicators [33], including yield (percentage 
of known positives predicted as virtual hits), hit-rate (percentage 
of virtual hits that are known positives), false-hit rate (percentage 
of virtual hits that are known negatives) and enrichment factor 
(magnitude of hit-rate improvement over random selection from 
chemical libraries).

RESULTS AND DISCUSSION
SVM model construction via 5-fold cross validation

5-fold cross validation was conducted to test SVM model 
in indentifying NTR1 inhibitors. The accuracies for predicting 
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Figure 1 12 molecular scaffolds representing 119 known NTR1 inhibitors and the corresponding number of inhibitors within each scaffold (in 
bracket).
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Figure 2 12 representative structures in scaffold 1 of known NTR1 inhibitors (blue color indicate the common structure shared by all inhibitors).
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inhibitors and non-inhibitors in each fold are 75~95% and 
99.9776~100% respectively, and the average accuracies are 
84.8% and 99.9911% for inhibitor and non-inhibitors. According 
to a comprehensive literature review, no VS study was conducted 
to identify NTR1 inhibitors so far, therefore it is difficult to 
evaluate the prediction performance of SVM model by comparing 
to that of existing study. However, the prediction accuracy of 
NTR1 inhibitor is comparable to or better than that of studies of 
other targets [19,29, 32,34,35]. Moreover, prediction accuracy of 
non-inhibitor (99.9911%) statistically indicates a very low false-
hit rate, which is key to guarantee the success rate of in vitro and 
in vivo inhibitor identification. Thus, SVM constructed in this 
work shows good prediction capability for indentifying known 
NTR1 inhibitor.

Independent test and virtual screening of large 
compound libraries

The SVM developed by pre-2011 NTR1 inhibitors were 
used to independently test 20 post-2011 inhibitors. The yield 
of independent testing data is 90% (18 out of 20), which is 
comparable to the reported 50~94% yields of various VS tools 
[36]. It may be inappropriate to directly compare the testing 
percentage of this work with that of the reported literatures, 
because the differences in molecular types, descriptors and 
parameters can lead to fluctuated results. However, among those 
20 independent testing inhibitors, all 16 structurally similar 
to known NTR1 inhibitors and 2 out of 4 novel inhibitors are 
correctly predicted, which shows certain level of capacity in 
indentifying novel NTR1 inhibitors.

In addition to good hit identification performance reflected 
by 5-fold cross validation and independent test, the constructed 
SVM model demonstrates a substantially low false-hit rate. 3,452 

compounds are identified as active in screening 13.56M PubChem 
compounds that exclude the known NTR1 inhibitors, representing 
only 0.0255% of all compounds in PubChem. In screening 168K 
MDDR compounds of protein families other than NTR1 related 
one (G-protein coupled receptor family), the estimated false-hit 
rate is 0.0684%. According to the substantially low false-hit rate 
in screening large chemical libraries, the constructed SVM model 
is like to show good capacity in reducing false-positive inhibitors.

Moreover, false-hit rate of the constructed model was further 
evaluated by using 62 true NTR1 non-inhibitors indicated in 
ChEMBL, 6 of which are structurally similar to known inhibitor. 
All non-inhibitors, especially those 6, are correctly predicted as 
inactive, which suggests that SVM is capable of distinguishing 
NTR1 inhibitors from non-inhibitors that are structurally similar 
to know inhibitors.

Novel NTR1 inhibitors identified by SVM model

Studies suggested that SVM shows the capability of 
indentifying novel lead candidates rather than membership of 
compound families covered by the known active compounds 
[19,30]. In this work, the constructed SVM model identified 
115 compounds from MDDR as active inhibitor, 96 of which are 
structurally similar to know NTR1 inhibitors. These 96 inhibitors 
can be grouped to scaffold 1, 2, 7, 10 and 11 in Figure 1 with 30, 
1, 2, 62 and 1 compounds respectively.

17 novel scaffolds were identified in this study. Although no 
direct inhibitory activity against NTR1 has been reported, 5 of these 
scaffolds have already shown therapeutic effects on CNS disease 
or cancer. As shown in Table 1, Scaffold N1 (4-(cycloalkylalkyl) 
piperidine derivatives) was found to demonstrate neurotrophic 
and neuroprotective properties in vivo by regenerating 

Index Novel scaffold identified Representative compound of the scaffold Reported therapeutic effects of the scaffold

N1 Ar
R1 N

(CH2)n

R2

R3
N

Cl

OH Possess anti-allergic activity by facilitating the passage 
of active substances through physiological barriers (CNS 
related)

N2 N

O

S
R N

O

S Show in vivo neurotrophic and neuroprotective 
properties by the regeneration of animal sciatic nerve 
(CNS related)

N3
NR1

O

O

N
R2 N

O

O

N
N
H

O
Affect the central nervous system and have sedative, 
tranquillizing, neuroleptic and/or antidepressant actions 
(CNS related)

N4
N

O

N
H

O

N
R

N
O

N
H

O

N

O
Treat CNS and gastrointestinal disorders which 
is primarily modulated by neurotensin and it 
corresponding receptor (CNS related)

N5
N

O

R N

O
Demonstrate µM cytotoxic activities against several 
cancer cell lines, including HL60, N87, H460 and Hep G2 
(cancer related)

Table 1: 5 novel scaffolds with reported therapeutic effects on CNS disease or cancer together with a representative compound of the scaffold.
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animal sciatic nerve [37]. Scaffold N2 (N-substituted aliphatic 
heterocyclic compounds) was reported to possess anti-allergic 
activity by facilitating the passage of active substances through 
physiological barriers, which is similar to the mechanism of NTR1 
agonist NT8-13 in increasing CNS penetration and metabolic 
stability [38]. Scaffold N3 (piperidinylmethyloxazolidin-2-one 
derivatives) was proposed to affect central nervous system and 
have sedative, tranquillizing, neuroleptic and/or antidepressant 
actions without a noticeable cataleptic action [39]. Scaffold N4  
(N-((1-substituentpiperidin-4-yl)methyl)-3,4-dihydro-2H-[1,3]
oxazino[3,2-a]indole-10-carboxamide derivatives) was used as 
pharmaceuticals in the treatment of CNS and gastrointestinal 
disorders which is primarily modulated by neurotensin[40]. 
Scaffold N5 (quinolone alkaloids) provided a serial of compounds 
with µM cytotoxic activities against several cancer cell lines, 
including HL60, N87, H460 and Hep G2 [41].

Besides their therapeutic effect on CNS disease and cancer, 

the identified novel inhibitors demonstrate certain level of 
correlation to other NT-related indications like inflammation 
and immunomodulatory disease [42-53], as shown in Figure 3. 
Involvement in multiple indications reflects the sophisticated 
nature of biological signaling networks affected by NTR1 [54-
57]. In sum, some identified novel NTR1 inhibitors have already 
shown affects on NT-related diseases, but more predicted 
candidates are waiting for further evaluation. Large chemical 
libraries like PubChem provides a comprehensive pool of 
candidates in identifying more novel lead scaffolds, which asks 
for more effective VS tool with robustness and low false-hit rate 
to facilitate novel drug discovery.

CONCLUSION
Combinatorial SVM was used as a VS tool to identify NTR1 

inhibitors and showed good prediction performance. SVM model 
developed by NTR1 inhibitors found before 2011 successfully 

Figure 3 12 molecular examples identified as novel NTR1 inhibitor in this work with no effects on CNS disease and cancer reported so far, but with 
effects on other NT-related indications like inflammation and immunomodulatory disease.
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identified 90% of post-2011 inhibitors, which demonstrates its 
capacity in indentifying novel NTR1 inhibitors. Virtual screening 
of large chemical libraries shows substantially low false-hit rates 
of 0.0255% and 0.0684% of 13.56M PubChem and 168K MDDR 
compounds. 62 experimentally verified NTR1 non-inhibitors 
were all correctly predicted as inactive, which suggests the 
capacity of SVM model in distinguishing NTR1 inhibitors from 
non-inhibitors. Some novel inhibitors proposed in this work 
have already shown clear therapeutic effect on both CNS disease 
and cancer, which raises urgent needs on conducting more 
comprehensive screening of a even larger chemical space to 
identify more inhibitors targeting NTR1.
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